Aunio, P., Niemivirta, M., Hautamäki, J., Van Luit, J. E., Shi, J., & Zhang, M. (2006). Young children’s number sense in China and Finland. Scandinavian Journal of Educational Research, 50(5), 483–502. https://doi.org/10.1080/00313830600953576.
Article
Google Scholar
Aunola, K., Leskinen, E., Lerkkanen, M. K., & Nurmi, J. E. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96(4), 699–713. https://doi.org/10.1037/0022-0663.96.4.699.
Article
Google Scholar
Aunola, K., & Räsänen, P. (2007). The Basic Arithmetic Test. Jyväskylä: University of Jyväskylä.
Google Scholar
Baroody, A. J. (1999). Children’s relational knowledge of addition and subtraction. Cognition and Instruction, 17(2), 137–175. https://doi.org/10.1207/S1532690XCI170201.
Article
Google Scholar
Baroody, A. J. (2006). Why children have difficulties mastering the basic number combinations and how to help them. Teaching Children Mathematics, 13(1), 22–31. https://doi.org/10.5951/TCM.13.1.0022.
Article
Google Scholar
Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333–339. https://doi.org/10.1177/00222194050380040901.
Article
PubMed
Google Scholar
Blankson, A. N., & Blair, C. (2016). Cognition and classroom quality as predictors of math achievement in the kindergarten year. Learning and Instruction, 41, 32–40. https://doi.org/10.1016/j.learninstruc.2015.09.004.
Article
Google Scholar
Blazhenkova, O., & Kozhevnikov, M. (2010). Visual-object ability: A new dimension of non-verbal intelligence. Cognition, 117(3), 276–301. https://doi.org/10.1016/j.cognition.2010.08.021.
Article
PubMed
Google Scholar
Brannon, E. M., Abbott, S., & Lutz, D. J. (2004). Number bias for the discrimination of large visual sets in infancy. Cognition, 93(2), 59–68. https://doi.org/10.1016/j.cognition.2004.01.004.
Article
Google Scholar
Buijsman, S. (2021). The representations of the approximate number system. Philosophical Psychology, 34(2), 300–317. https://doi.org/10.1080/09515089.2020.1866755.
Article
Google Scholar
Clarke, B., Nelson, N., & Shanley, L. (2016). Mathematics fluency—More than the weekly timed test. In The Fluency Construct, (pp. 67–89). New York: Springer.
Chapter
Google Scholar
Clarke, S., & Beck, J. (2021). The number sense represents (rational) numbers. Behavioral and Brain Sciences, 44, 178. https://doi.org/10.1017/S0140525X21000571.
Article
Google Scholar
Cohen, L., Dehaene, S., Chochon, F., Lehericy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical and fMRI study. Neuropsychologia, 38(10), 1426–1440. https://doi.org/10.1016/S0028-3932(00)00038-5.
Article
PubMed
Google Scholar
Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. https://doi.org/10.1016/j.tics.2003.10.005.
Article
PubMed
Google Scholar
Cowan, R., Donlan, C., Shepherd, D. L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103(4), 786–803. https://doi.org/10.1037/a0024556.
Article
Google Scholar
Cui, J., Georgiou, G. K., Zhang, Y., Li, Y., Shu, H., & Zhou, X. (2017). Examining the relationship between rapid automatized naming and arithmetic fluency in Chinese kindergarten children. Journal of Experimental Child Psychology, 154, 146–163. https://doi.org/10.1016/j.jecp.2016.10.008.
Article
PubMed
Google Scholar
Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Human Genetics, 126(1), 215–232. https://doi.org/10.1007/s00439-009-0655-4.
Article
PubMed
Google Scholar
Dehaene, S. (2001). Précis of the number sense. Mind & Language, 16(1), 16–36. https://doi.org/10.1111/1468-0017.00154.
Article
Google Scholar
Demetriou, A., Mougi, A., Spanoudis, G., & Makris, N. (2022). Changing developmental priorities between executive functions, working memory, and reasoning in the formation of g from 6 to 12 years. Intelligence, 90, 1–14. https://doi.org/10.1016/j.intell.2021.101602.
Article
Google Scholar
Denckla, M. B., & Rudel, R. G. (1976). Rapid ‘automatized’ naming (RAN): Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14(4), 471–479.
Article
Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002.
Article
PubMed
Google Scholar
Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44.
Article
Google Scholar
Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psycho educational Assessment, 27(3), 265–279. https://doi.org/10.1177/0734282908330592.
Article
Google Scholar
Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. Developmental Psychology, 55(3), 637–652. https://doi.org/10.1037/dev0000649.
Article
PubMed
Google Scholar
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406. https://doi.org/10.1016/j.cognition.2010.02.002.
Article
PubMed
PubMed Central
Google Scholar
Green, C. T., Bunge, S. A., Chiongbian, V. B., Barrow, M., & Ferrer, E. (2017). Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of Experimental Child Psychology, 157, 125–143. https://doi.org/10.1016/j.jecp.2016.12.005.
Article
PubMed
PubMed Central
Google Scholar
Guzmán, B., Rodríguez, C., Sepúlveda, F., & Ferreira, R. A. (2019). Number sense abilities, working memory and RAN: A longitudinal approximation of typical and atypical development in Chilean children. Revista de Psicodidáctica (English ed.), 24(1), 62–70. https://doi.org/10.1016/j.psicoe.2018.11.003.
Article
Google Scholar
Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60–68. https://doi.org/10.1016/j.tine.2015.05.001.
Article
Google Scholar
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.
Google Scholar
Hoekstra, R. A., Bartels, M., & Boomsma, D. I. (2007). Longitudinal genetic study of verbal and nonverbal IQ from early childhood to young adulthood. Learning and Individual Differences, 17(2), 97–114. https://doi.org/10.1016/j.lindif.2007.05.005.
Article
Google Scholar
Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, C. (2012). Building kindergartners’ number sense: A randomized controlled study. Journal of Educational Psychology, 104(3), 647–660. https://doi.org/10.1037/a0029018.
Article
PubMed
PubMed Central
Google Scholar
Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 103–119.
Article
Google Scholar
Koponen, T., Georgiou, G., Salmi, P., Leskinen, M., & Aro, M. (2017). A meta-analysis of the relation between RAN and mathematics. Journal of Educational Psychology, 109(7), 977–992. https://doi.org/10.1037/edu0000182.
Article
Google Scholar
Lechner, C. M., Miyamoto, A., & Knopf, T. (2019). Should students be smart, curious, or both? Fluid intelligence, openness, and interest co-shape the acquisition of reading and math competence. Intelligence, 76, 101378. https://doi.org/10.1016/j.intell.2019.101378.
Article
Google Scholar
Levine, S. C., Jordan, N. C., & Huttenlocher, J. (1992). Development of calculation abilities in young children. Journal of Experimental Child Psychology, 53(1), 72–103. https://doi.org/10.1016/S0022-0965(05)80005-0.
Article
PubMed
Google Scholar
Liao, C. H., Deng, C., Hamilton, J., Lee, C. S. C., Wei, W., & Georgiou, G. K. (2015). The role of rapid naming in reading development and dyslexia in Chinese. Journal of Experimental Child Psychology, 130, 106–122. https://doi.org/10.1016/j.jecp.2014.10.002.
Article
PubMed
Google Scholar
Lukowski, S. L., Rosenberg-Lee, M., Thompson, L. A., Hart, S. A., Willcutt, E. G., Olson, R. K., … Pennington, B. F. (2017). Approximate number sense shares etiological overlap with mathematics and general cognitive ability. Intelligence, 65, 67–74. https://doi.org/10.1016/j.intell.2017.08.005.
Article
PubMed
PubMed Central
Google Scholar
Malone, S. A., Burgoyne, K., & Hulme, C. (2020). Number knowledge and the approximate number system are two critical foundations for early arithmetic development. Journal of Educational Psychology, 112(6), 1167–1182. https://doi.org/10.1037/edu0000426.
Article
Google Scholar
Malone, S. A., Heron-Delaney, M., Burgoyne, K., & Hulme, C. (2019). Learning correspondences between magnitudes, symbols and words: Evidence for a triple code model of arithmetic development. Cognition, 187, 1–9. https://doi.org/10.1016/j.cognition.2018.11.016.
Article
PubMed
Google Scholar
Malone, S. A., Pritchard, V. E., & Hulme, C. (2021). Separable effects of the approximate number system, symbolic number knowledge, and number ordering ability on early arithmetic development. Journal of Experimental Child Psychology, 208, 105120. https://doi.org/10.1016/j.jecp.2021.105120.
Article
PubMed
Google Scholar
Manginas, G., Papageorgiou, A., Theodorou, M., & Iakovaki, M. (2021). Mathematical competence in preschool students and its relationship with intelligence, age and cognitive functions of attention, information processing speed and reaction inhibition. Editorial from MónicaArnalPalacián, Didactics Editor of MTRJ, 53.
Google Scholar
Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), 23749. https://doi.org/10.1371/journal.pone.0023749.
Article
Google Scholar
Nieder, A. (2020). The adaptive value of numerical competence. Trends in Ecology & Evolution, 35(7), 605–617. https://doi.org/10.1016/j.tree.2020.02.009.
Article
Google Scholar
Nieder, A. (2021). Neuroethology of number sense across the animal kingdom. Journal of Experimental Biology, 224(6), 1–15. https://doi.org/10.1242/jeb.218289.
Article
Google Scholar
Parkin, J. R., & Beaujean, A. A. (2012). The effects of Wechsler Intelligence Scale for Children—Fourth Edition cognitive abilities on math achievement. Journal of School Psychology, 50(1), 113–128. https://doi.org/10.1016/j.jsp.2011.08.003.
Article
PubMed
Google Scholar
Peng, P., Wang, T., Wang, C., & Lin, X. (2019). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145(2), 189–236. https://doi.org/10.1037/bul0000182.
Article
PubMed
Google Scholar
Preacher, K. J., & Hayes, A. F. (2008). Assessing mediation incommunication research. In A. F. Hayes, M. D. Slater, & L. B. Synder (Eds.), The Sage sourcebook of advanced data analysis methods for communication research, (vol. 10 4135/9781452272054n2, pp. 13–54). Sage Publications.
Chapter
Google Scholar
Primi, R., Ferrão, M. E., & Almeida, L. S. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20(5), 446–451. https://doi.org/10.1016/j.lindif.2010.05.001.
Article
Google Scholar
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122. https://doi.org/10.1016/j.lindif.2009.10.005.
Article
Google Scholar
Raven, J. C., & Court, J. H. (1938). Raven's progressive matrices. Los Angeles: Western Psychological Services.
Google Scholar
Reys, R., Lindquist, M., Lambdin, D. V., & Smith, N. L. (2014). Helping Children Learn Mathematics. New York: Wiley.
Google Scholar
Robinson, C. S., Menchetti, B. M., & Torgesen, J. K. (2002). Toward a two-factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 81–89. https://doi.org/10.1111/1540-5826.00035.
Article
Google Scholar
Schubert, A.-L., Hagemann, D., & Frischkorn, G. T. (2017). Is general intelligence little more than the speed of higher-order processing? Journal of Experimental Psychology: General, 146(10), 1498–1512. https://doi.org/10.1037/xge0000325.
Article
Google Scholar
Simpson-Kent, I. L., Fuhrmann, D., Bathelt, J., Achterberg, J., Borgeest, G. S., & Kievit, R. A. (2020). Neurocognitive reorganization between crystallized intelligence, fluid intelligence and white matter microstructure in two age-heterogeneous developmental cohorts. Developmental Cognitive Neuroscience, 41, 100743. https://doi.org/10.1016/j.dcn.2019.100743.
Article
PubMed
Google Scholar
Snow, R. E., Kyllonen, P. C., & Marshalek, B. (1984). The topography of ability and learning correlations. Advances in the Psychology of Human Intelligence, 2(47), 103.
Google Scholar
Sorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., … Aro, M. (2017). Math anxiety and its relationship with basic arithmetic skills among primary school children. British Journal of Educational Psychology, 87(3), 309–327. https://doi.org/10.1111/bjep.12151.
Article
PubMed
Google Scholar
Sprenger, P., & Benz, C. (2020). Children’s perception of structures when determining cardinality of sets—Results of an eye-tracking study with 5-year-old children. ZDM, 52(4), 753–765. https://doi.org/10.1007/s11858-020-01137-x.
Article
Google Scholar
Tamez, E., Myerson, J., & Hale, S. (2008). Learning, working memory, and intelligence revisited. Behavioural Processes, 78(2), 240–245. https://doi.org/10.1016/j.beproc.2008.01.008.
Article
PubMed
Google Scholar
Tourva, A., & Spanoudis, G. (2020). Speed of processing, control of processing, working memory and crystallized and fluid intelligence: Evidence for a developmental cascade. Intelligence, 83, 1–9. https://doi.org/10.1016/j.intell.2020.101503.
Article
Google Scholar
van Bueren, N. E., van der Ven, S. H., Roelofs, K., Kadosh, R. C., & Kroesbergen, E. H. (2022). Predicting math ability using working memory, number sense, and neurophysiology in children and adults. bioRxiv. https://doi.org/10.1101/2022.02.10.479865.
Van der Sluis, S., De Jong, P. F., & Van der Leij, A. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of Experimental Child Psychology, 87(3), 239–266. https://doi.org/10.1016/j.jecp.2003.12.002.
Article
PubMed
Google Scholar
Van der Sluis, S., Willemsen, G., De Geus, E. J., Boomsma, D. I., & Posthuma, D. (2008). Gene-environment interaction in adults’ IQ scores: Measures of past and present environment. Behavior Genetics, 38(4), 348–360. https://doi.org/10.1007/s10519-008-9212-5.
Article
PubMed
PubMed Central
Google Scholar
Watkins, M. W., Lei, P. W., & Canivez, G. L. (2007). Psychometric intelligence and achievement: A cross-lagged panel analysis. Intelligence, 35(1), 59–68. https://doi.org/10.1016/j.intell.2006.04.005.
Article
Google Scholar
Wechsler, D. (2004). Wechsler Scale of Intelligence, (4th ed., ). London: Pearson Assessment.
Google Scholar
Wechsler, D. (2005). Wechsler Individual Achievement Test, (2nd ed., ). San Antonio: The Psychological Corporation.
Google Scholar
Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of Learning Disabilities, 50(1), 49–61. https://doi.org/10.1177/0022219415588851.
Article
PubMed
Google Scholar
Xu, W., Geng, F., & Wang, L. (2022). Relations of computational thinking to reasoning ability and creative thinking in young children: Mediating role of arithmetic fluency. Thinking Skills and Creativity, 44, 1–11. https://doi.org/10.1016/j.tsc.2022.101041.
Article
Google Scholar
Zhang, J., & Ziegler, M. (2015). Interaction effects between openness and fluid intelligence predicting scholastic performance. Journal of Intelligence, 3(3), 91–110. https://doi.org/10.3390/jintelligence3030091.
Article
Google Scholar